New publication: “Conflict assessment and resolution of climate-optimal aircraft trajectories at network scale”

The second 2023 research paper within the Air Operations Lab was published by PhD student Fateme Baneshi and explores a way to reduce air traffic conflicts arising from attempts to mitigate the climate impact of aviation.


Aviation contributes to anthropogenic climate change through carbon dioxide (CO2) and non-CO2 emissions. Due to dependency on atmospheric conditions, the non-CO2 climate impacts can be mitigated using aircraft trajectory optimization. However, adopting independently optimized trajectories may not be operationally feasible for the air traffic management system due to the associated impacts on the safety, demand, and complexity of air traffic. This study aims to explore the effects of employing climate-optimized trajectories on air traffic complexity in terms of the number of conflicts and propose a strategic resolution based on speed change to resolve the conflicts that arise. A scenario with 1005 flights is considered as the case study. The results indicate that the adoption of climate-optimal trajectories increases operational cost and the number of conflicts. Employing the proposed resolution algorithm, it is shown that the conflicts can be resolved by accepting slight increases in climate impact and cost.

Conflict assessment and resolution of climate-optimal aircraft trajectories at network scale. Fateme Baneshi, Manuel Soler, Abolfazl Simorgh. Transportation Research Part D: Transport and Environment. 2023, volume, 115. Doi:

Leave a Reply

%d bloggers like this: